In [156]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.pyplot as plt
import scipy.stats as stats
In [157]:
groceries=pd.read_csv('Original_OG.csv')
In [158]:
groceries.shape
Out[158]:
(628, 34)
In [159]:
groceries.head()
Out[159]:
| Novice_Old | P_or_D | Frequency | Pickup_Dom | Delivery_Dom | last_4_orders | shopping_frequency | go_inside_store | why_go_inside | other_store_shop | ... | accept_return_later | reject_sub | get_sub_another_store | get_sub_same_store | change_meal_plan | wait | another_online_store | Unnamed: 31 | Feel_subs | satisfaction_with_subs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | Make a separate trip to buy the right item at ... | Open-Ended Response | Open-Ended Response |
| 1 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 6-12 times a year | No | NaN | 0.0 | ... | Never | Never | Never | Never | 8 or more times | Never | Never | Never | 7 | 100 |
| 2 | Novice | Pickup | Once a month | All of the time | NaN | 0.0 | 6-12 times a year | No | NaN | 1.0 | ... | Never | 3-4 times | Never | Never | 1 time | Never | Never | 5-7 times | 3 | 66 |
| 3 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 0.0 | ... | Never | Never | Never | Never | Never | 1 time | Never | Never | 7 | 100 |
| 4 | Novice | Pickup | 2-3 times a month | Most of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 1.0 | ... | Never | Never | 5-7 times | 3-4 times | 1 time | 3-4 times | Never | 5-7 times | 1 | 36 |
5 rows × 34 columns
In [160]:
# Dropping the first row
newg=groceries.drop([0,0])
In [161]:
newg.head(10)
Out[161]:
| Novice_Old | P_or_D | Frequency | Pickup_Dom | Delivery_Dom | last_4_orders | shopping_frequency | go_inside_store | why_go_inside | other_store_shop | ... | accept_return_later | reject_sub | get_sub_another_store | get_sub_same_store | change_meal_plan | wait | another_online_store | Unnamed: 31 | Feel_subs | satisfaction_with_subs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 6-12 times a year | No | NaN | 0.0 | ... | Never | Never | Never | Never | 8 or more times | Never | Never | Never | 7 | 100 |
| 2 | Novice | Pickup | Once a month | All of the time | NaN | 0.0 | 6-12 times a year | No | NaN | 1.0 | ... | Never | 3-4 times | Never | Never | 1 time | Never | Never | 5-7 times | 3 | 66 |
| 3 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 0.0 | ... | Never | Never | Never | Never | Never | 1 time | Never | Never | 7 | 100 |
| 4 | Novice | Pickup | 2-3 times a month | Most of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 1.0 | ... | Never | Never | 5-7 times | 3-4 times | 1 time | 3-4 times | Never | 5-7 times | 1 | 36 |
| 5 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 1-2 times per week | No | NaN | 0.0 | ... | Never | 1-2 times | Never | Never | Never | Never | Never | Never | 4 | 73 |
| 6 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 1-2 times per week | No | NaN | 1.0 | ... | Never | 5-7 times | NaN | Never | 3-4 times | 3-4 times | Never | 8 or more times | 1 | 14 |
| 7 | Novice | Pickup | NaN | All of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 1.0 | ... | 3-4 times | 1-2 times | 3-4 times | Never | 1 time | 3-4 times | 1 time | 1 time | NaN | NaN |
| 8 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 1-2 times per week | 1 | I sometimes forget to add items to my order. | 0.0 | ... | Never | 3-4 times | Never | Never | NaN | 3-4 times | Never | Never | 7 | 100 |
| 9 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 1.0 | ... | Never | 3-4 times | 3-4 times | Never | Never | Never | Never | 3-4 times | 3 | 36 |
| 10 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 1.0 | ... | Never | 3-4 times | 1 time | Never | 1 time | Never | Never | 3-4 times | 4 | 51 |
10 rows × 34 columns
In [162]:
groceries.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 628 entries, 0 to 627 Data columns (total 34 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Novice_Old 627 non-null object 1 P_or_D 627 non-null object 2 Frequency 622 non-null object 3 Pickup_Dom 402 non-null object 4 Delivery_Dom 262 non-null object 5 last_4_orders 627 non-null float64 6 shopping_frequency 627 non-null object 7 go_inside_store 375 non-null object 8 why_go_inside 69 non-null object 9 other_store_shop 375 non-null float64 10 Why_other_store 162 non-null object 11 Unnamed: 11 41 non-null object 12 Speed_R 621 non-null object 13 Quality_R 621 non-null object 14 Saving_R 621 non-null object 15 Novelty_R 621 non-null object 16 Convenience_R 621 non-null object 17 Limitations_R 621 non-null object 18 Easier_diet_R 621 non-null object 19 Findability_R 621 non-null object 20 Unnamed: 20 0 non-null float64 21 percent_time_gettings_subs 599 non-null float64 22 accept_use_sub 601 non-null object 23 accept_use_sub.1 601 non-null object 24 accept_return_later 601 non-null object 25 reject_sub 601 non-null object 26 get_sub_another_store 574 non-null object 27 get_sub_same_store 575 non-null object 28 change_meal_plan 524 non-null object 29 wait 565 non-null object 30 another_online_store 569 non-null object 31 Unnamed: 31 577 non-null object 32 Feel_subs 541 non-null object 33 satisfaction_with_subs 538 non-null object dtypes: float64(4), object(30) memory usage: 166.9+ KB
In [163]:
groceries.describe(include='object')
Out[163]:
| Novice_Old | P_or_D | Frequency | Pickup_Dom | Delivery_Dom | shopping_frequency | go_inside_store | why_go_inside | Why_other_store | Unnamed: 11 | ... | accept_return_later | reject_sub | get_sub_another_store | get_sub_same_store | change_meal_plan | wait | another_online_store | Unnamed: 31 | Feel_subs | satisfaction_with_subs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| count | 627 | 627 | 622 | 402 | 262 | 627 | 375 | 69 | 162 | 41 | ... | 601 | 601 | 574 | 575 | 524 | 565 | 569 | 577 | 541 | 538 |
| unique | 2 | 4 | 6 | 4 | 3 | 4 | 2 | 5 | 3 | 21 | ... | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 9 | 85 |
| top | Novice | Pickup | 2-3 times a month | All of the time | All of the time | 2-3 times per month | No | I sometimes forget to add items to my order. | I stop at the second store when my online orde... | In between orders | ... | Never | Never | Never | Never | Never | 3-4 times | Never | Never | 4 | 100 |
| freq | 489 | 350 | 317 | 316 | 182 | 296 | 308 | 25 | 77 | 2 | ... | 556 | 368 | 359 | 491 | 310 | 191 | 473 | 268 | 150 | 75 |
4 rows × 30 columns
In [164]:
groceries.Pickup_Dom.unique()
Out[164]:
array([nan, 'All of the time', 'Most of the time', 'Some of the time',
'50'], dtype=object)
In [165]:
groceries.Delivery_Dom.unique()
Out[165]:
array([nan, 'Some of the time', 'All of the time', 'Most of the time'],
dtype=object)
In [166]:
# recode variables nan = 1, some of the time = 2, most of the time= 3, all of the time = 4
modeF= ['NaN', 'Some of the time', 'Most of the time', 'All of the time']
dummy_vars=[1, 2, 3, 4]
newg['Pickup_mode_frequency'] = newg['Pickup_Dom'].replace(modeF, dummy_vars)
newg['Pickup_mode_frequency'] = newg['Pickup_mode_frequency'].fillna(1)
newg['Pickup_mode_frequency'] = newg['Pickup_mode_frequency'].astype(float)
newg.tail(10)
Out[166]:
| Novice_Old | P_or_D | Frequency | Pickup_Dom | Delivery_Dom | last_4_orders | shopping_frequency | go_inside_store | why_go_inside | other_store_shop | ... | reject_sub | get_sub_another_store | get_sub_same_store | change_meal_plan | wait | another_online_store | Unnamed: 31 | Feel_subs | satisfaction_with_subs | Pickup_mode_frequency | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 618 | Repeat | delivery | About once a week | Some of the time | Most of the time | 1.0 | 2-3 times per month | NaN | NaN | NaN | ... | 1-2 times | 3-4 times | Never | Never | 5-7 times | Never | 3-4 times | NaN | NaN | 2.0 |
| 619 | Repeat | delivery | More than once a week | NaN | All of the time | 1.0 | 6-12 times a year | NaN | NaN | NaN | ... | Never | Never | Never | 1 time | 1 time | Never | 1 time | 4 | 51 | 1.0 |
| 620 | Repeat | delivery | NaN | NaN | All of the time | 1.0 | 2-3 times per month | NaN | NaN | NaN | ... | 1-2 times | Never | Never | NaN | 3-4 times | Never | 1 time | NaN | NaN | 1.0 |
| 621 | Repeat | delivery | 2-3 times a month | NaN | All of the time | 1.0 | 2-3 times per month | NaN | NaN | NaN | ... | Never | Never | Never | Never | 8 or more times | Never | Never | NaN | NaN | 1.0 |
| 622 | Repeat | delivery | More than once a week | NaN | All of the time | 1.0 | 1-2 times per week | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.0 |
| 623 | Repeat | delivery | About once a week | NaN | All of the time | 1.0 | 1-2 times per week | NaN | NaN | NaN | ... | 1-2 times | Never | 1 time | Never | 3-4 times | Never | Never | 5 | 77 | 1.0 |
| 624 | Repeat | delivery | About once a week | NaN | Most of the time | 1.0 | 6-12 times a year | NaN | NaN | NaN | ... | Never | 1 time | Never | 1 time | 3-4 times | Never | 1 time | NaN | NaN | 1.0 |
| 625 | Repeat | delivery | 2-3 times a month | All of the time | Some of the time | 0.0 | 1-2 times per week | 1 | I just want to browse. | 1.0 | ... | Never | 3-4 times | Never | 3-4 times | 3-4 times | Never | 3-4 times | 6 | 83 | 4.0 |
| 626 | Repeat | delivery | 2-3 times a month | NaN | All of the time | 1.0 | 2-3 times per month | NaN | NaN | NaN | ... | 1-2 times | Never | Never | 1 time | 5-7 times | Never | Never | 3 | 64 | 1.0 |
| 627 | Repeat | delivery | 2-3 times a month | NaN | All of the time | 1.0 | Never | NaN | NaN | NaN | ... | Never | Never | Never | Never | 3-4 times | Never | Never | 7 | 100 | 1.0 |
10 rows × 35 columns
In [170]:
newg['Delivery_mode_frequency'] = newg['Delivery_Dom'].replace(modeF, dummy_vars)
newg['Delivery_mode_frequency'] = newg['Delivery_mode_frequency'].fillna(1)
newg.head(10)
/var/folders/zs/gnl937793yn9_321mtt3zflw0000gn/T/ipykernel_76854/2377009431.py:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
newg['Delivery_mode_frequency'] = newg['Delivery_Dom'].replace(modeF, dummy_vars)
Out[170]:
| Novice_Old | P_or_D | Frequency | Pickup_Dom | Delivery_Dom | last_4_orders | shopping_frequency | go_inside_store | why_go_inside | other_store_shop | ... | get_sub_same_store | change_meal_plan | wait | another_online_store | Unnamed: 31 | Feel_subs | satisfaction_with_subs | Pickup_mode_frequency | Delivery_mode_frequency | mode | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 6-12 times a year | No | NaN | 0.0 | ... | Never | 8 or more times | Never | Never | Never | 7 | 100 | 4.0 | 1.0 | pickup |
| 2 | Novice | Pickup | Once a month | All of the time | NaN | 0.0 | 6-12 times a year | No | NaN | 1.0 | ... | Never | 1 time | Never | Never | 5-7 times | 3 | 66 | 4.0 | 1.0 | pickup |
| 3 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 0.0 | ... | Never | Never | 1 time | Never | Never | 7 | 100 | 4.0 | 1.0 | pickup |
| 4 | Novice | Pickup | 2-3 times a month | Most of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 1.0 | ... | 3-4 times | 1 time | 3-4 times | Never | 5-7 times | 1 | 36 | 3.0 | 1.0 | pickup |
| 5 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 1-2 times per week | No | NaN | 0.0 | ... | Never | Never | Never | Never | Never | 4 | 73 | 4.0 | 1.0 | pickup |
| 6 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 1-2 times per week | No | NaN | 1.0 | ... | Never | 3-4 times | 3-4 times | Never | 8 or more times | 1 | 14 | 4.0 | 1.0 | pickup |
| 7 | Novice | Pickup | NaN | All of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 1.0 | ... | Never | 1 time | 3-4 times | 1 time | 1 time | NaN | NaN | 4.0 | 1.0 | pickup |
| 8 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 1-2 times per week | 1 | I sometimes forget to add items to my order. | 0.0 | ... | Never | NaN | 3-4 times | Never | Never | 7 | 100 | 4.0 | 1.0 | pickup |
| 9 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 1.0 | ... | Never | Never | Never | Never | 3-4 times | 3 | 36 | 4.0 | 1.0 | pickup |
| 10 | Novice | Pickup | 2-3 times a month | All of the time | NaN | 0.0 | 2-3 times per month | No | NaN | 1.0 | ... | Never | 1 time | Never | Never | 3-4 times | 4 | 51 | 4.0 | 1.0 | pickup |
10 rows × 37 columns
In [171]:
newg['mode'] = np.where(
newg['Pickup_mode_frequency'] > newg['Delivery_mode_frequency'],
'pickup', 'delivery')
In [172]:
newg.tail()
Out[172]:
| Novice_Old | P_or_D | Frequency | Pickup_Dom | Delivery_Dom | last_4_orders | shopping_frequency | go_inside_store | why_go_inside | other_store_shop | ... | get_sub_same_store | change_meal_plan | wait | another_online_store | Unnamed: 31 | Feel_subs | satisfaction_with_subs | Pickup_mode_frequency | Delivery_mode_frequency | mode | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 623 | Repeat | delivery | About once a week | NaN | All of the time | 1.0 | 1-2 times per week | NaN | NaN | NaN | ... | 1 time | Never | 3-4 times | Never | Never | 5 | 77 | 1.0 | 4.0 | delivery |
| 624 | Repeat | delivery | About once a week | NaN | Most of the time | 1.0 | 6-12 times a year | NaN | NaN | NaN | ... | Never | 1 time | 3-4 times | Never | 1 time | NaN | NaN | 1.0 | 3.0 | delivery |
| 625 | Repeat | delivery | 2-3 times a month | All of the time | Some of the time | 0.0 | 1-2 times per week | 1 | I just want to browse. | 1.0 | ... | Never | 3-4 times | 3-4 times | Never | 3-4 times | 6 | 83 | 4.0 | 2.0 | pickup |
| 626 | Repeat | delivery | 2-3 times a month | NaN | All of the time | 1.0 | 2-3 times per month | NaN | NaN | NaN | ... | Never | 1 time | 5-7 times | Never | Never | 3 | 64 | 1.0 | 4.0 | delivery |
| 627 | Repeat | delivery | 2-3 times a month | NaN | All of the time | 1.0 | Never | NaN | NaN | NaN | ... | Never | Never | 3-4 times | Never | Never | 7 | 100 | 1.0 | 4.0 | delivery |
5 rows × 37 columns
In [173]:
cols = ['mode', 'Novice_Old', 'satisfaction_with_subs', 'Saving_R', 'Speed_R',
'Quality_R', 'Convenience_R', 'Limitations_R', 'Novelty_R', 'Findability_R', 'shopping_frequency', 'percent_time_gettings_subs',
'accept_use_sub', 'reject_sub','accept_return_later', 'accept_use_sub.1' ]
grocersmall = newg[cols]
grocersmall.head()
Out[173]:
| mode | Novice_Old | satisfaction_with_subs | Saving_R | Speed_R | Quality_R | Convenience_R | Limitations_R | Novelty_R | Findability_R | shopping_frequency | percent_time_gettings_subs | accept_use_sub | reject_sub | accept_return_later | accept_use_sub.1 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | pickup | Novice | 100 | Somewhat Agree | Strongly Agree - Top reason | Somewhat Agree | Strongly Agree - Top reason | Strongly Disagree | Strongly Disagree | Strongly Agree - Top reason | 6-12 times a year | 98.0 | 8 or more times | Never | Never | Never |
| 2 | pickup | Novice | 66 | Somewhat Agree | Strongly Agree - Top reason | Somewhat Disagree | Somewhat Agree | Strongly Disagree | Somewhat Agree | Somewhat Agree | 6-12 times a year | 100.0 | 5-7 times | 3-4 times | Never | 1-2 times |
| 3 | pickup | Novice | 100 | Neither Agree nor Disagree | Strongly Agree - Top reason | Neither Agree nor Disagree | Neither Agree nor Disagree | Strongly Agree - Top reason | Neither Agree nor Disagree | Strongly Agree - Top reason | 2-3 times per month | 5.0 | 8 or more times | Never | Never | Never |
| 4 | pickup | Novice | 36 | Strongly Agree - Top reason | Strongly Agree - Top reason | Somewhat Disagree | Strongly Disagree | Strongly Disagree | Strongly Disagree | Strongly Agree - Top reason | 2-3 times per month | 21.0 | 5-7 times | Never | Never | Never |
| 5 | pickup | Novice | 73 | Neither Agree nor Disagree | Somewhat Agree | Neither Agree nor Disagree | Strongly Disagree | Somewhat Disagree | Somewhat Disagree | Somewhat Agree | 1-2 times per week | 100.0 | 1-2 times | 1-2 times | Never | Never |
In [174]:
grocersmall = grocersmall.copy()
In [175]:
grocersmall.dtypes
Out[175]:
mode object Novice_Old object satisfaction_with_subs object Saving_R object Speed_R object Quality_R object Convenience_R object Limitations_R object Novelty_R object Findability_R object shopping_frequency object percent_time_gettings_subs float64 accept_use_sub object reject_sub object accept_return_later object accept_use_sub.1 object dtype: object
In [176]:
sns.catplot( data=grocersmall, y='mode',x='percent_time_gettings_subs', kind='box', orient='h',
hue='mode', aspect=2)
plt.show()
In [177]:
grocersmall.groupby(['mode', 'Novice_Old'], dropna=True).percent_time_gettings_subs.describe()
Out[177]:
| count | mean | std | min | 25% | 50% | 75% | max | ||
|---|---|---|---|---|---|---|---|---|---|
| mode | Novice_Old | ||||||||
| delivery | Novice | 122.0 | 57.754098 | 36.836990 | 0.0 | 21.00 | 52.0 | 100.00 | 100.0 |
| Repeat | 116.0 | 41.396552 | 31.312139 | 1.0 | 14.00 | 37.5 | 62.00 | 100.0 | |
| pickup | Novice | 345.0 | 63.510145 | 39.517225 | 1.0 | 20.00 | 86.0 | 100.00 | 100.0 |
| Repeat | 16.0 | 45.500000 | 40.338567 | 10.0 | 14.25 | 20.0 | 92.25 | 100.0 |
In [178]:
sns.catplot( data=grocersmall, y='mode',x='percent_time_gettings_subs',
hue='Novice_Old', kind='box', orient='h', aspect=2)
plt.show()
In [179]:
grocersmall['satisfaction_with_subs'] = pd.to_numeric(
grocersmall['satisfaction_with_subs'],
errors='coerce')
sns.catplot( data=grocersmall, y='mode',x='satisfaction_with_subs', kind='box', hue='Novice_Old', orient='h')
plt.show()
In [180]:
grocersmall['satisfaction_with_subs'] = pd.to_numeric(
grocersmall['satisfaction_with_subs'],
errors='coerce')
sns.catplot( data=grocersmall, y='mode',x='satisfaction_with_subs', kind='box', hue='mode', aspect=2, orient='h')
plt.show()
In [181]:
grocersmall.groupby('mode', dropna=True).satisfaction_with_subs.describe()
Out[181]:
| count | mean | std | min | 25% | 50% | 75% | max | |
|---|---|---|---|---|---|---|---|---|
| mode | ||||||||
| delivery | 206.0 | 62.121359 | 30.263555 | 0.0 | 40.0 | 66.0 | 91.0 | 100.0 |
| pickup | 331.0 | 65.981873 | 25.979939 | 0.0 | 50.0 | 70.0 | 89.0 | 100.0 |
In [182]:
importance_ranking = ['Strongly Disagree', 'Somewhat Disagree', 'Neither Agree nor Disagree', 'Somewhat Agree', 'Strongly Agree - Top reason']
grocersmall['Speed_R'] = pd.Categorical(grocersmall['Speed_R'], categories=importance_ranking, ordered=True)
grocersmall['Speed_R'].value_counts().sort_index()
grocersmall['Speed_R'].describe()
Out[182]:
count 621 unique 5 top Strongly Agree - Top reason freq 370 Name: Speed_R, dtype: object
In [183]:
grocersmall.groupby('mode', dropna=True).Speed_R.value_counts().sort_index()
Out[183]:
mode Speed_R
delivery Strongly Disagree 14
Somewhat Disagree 12
Neither Agree nor Disagree 16
Somewhat Agree 66
Strongly Agree - Top reason 139
pickup Strongly Disagree 16
Somewhat Disagree 6
Neither Agree nor Disagree 13
Somewhat Agree 108
Strongly Agree - Top reason 231
Name: count, dtype: int64
In [184]:
sns.catplot(data=grocersmall, x='Speed_R', hue='mode', kind='count', aspect = 2)
plt.show()
In [185]:
grocersmall['Quality_R'] = pd.Categorical(grocersmall['Quality_R'], categories=importance_ranking, ordered=True)
grocersmall.groupby('mode', dropna=True).Speed_R.value_counts().sort_index()
Out[185]:
mode Speed_R
delivery Strongly Disagree 14
Somewhat Disagree 12
Neither Agree nor Disagree 16
Somewhat Agree 66
Strongly Agree - Top reason 139
pickup Strongly Disagree 16
Somewhat Disagree 6
Neither Agree nor Disagree 13
Somewhat Agree 108
Strongly Agree - Top reason 231
Name: count, dtype: int64
In [186]:
sns.catplot(data=grocersmall, x='Quality_R', hue='mode', kind='count', aspect = 2)
plt.show()
In [187]:
grocersmall['Limitations_R'] = pd.Categorical(grocersmall['Limitations_R'], categories=importance_ranking, ordered=True)
grocersmall.groupby('mode', dropna=True).Limitations_R.value_counts().sort_index()
Out[187]:
mode Limitations_R
delivery Strongly Disagree 38
Somewhat Disagree 24
Neither Agree nor Disagree 28
Somewhat Agree 65
Strongly Agree - Top reason 92
pickup Strongly Disagree 113
Somewhat Disagree 33
Neither Agree nor Disagree 52
Somewhat Agree 108
Strongly Agree - Top reason 68
Name: count, dtype: int64
In [188]:
sns.catplot(data=grocersmall, x='Limitations_R', hue='mode', kind='count', aspect = 2)
plt.show()
In [189]:
grocersmall['Convenience_R'] = pd.Categorical(grocersmall['Convenience_R'], categories=importance_ranking, ordered=True)
grocersmall.groupby('mode', dropna=True).Convenience_R.value_counts().sort_index()
Out[189]:
mode Convenience_R
delivery Strongly Disagree 82
Somewhat Disagree 45
Neither Agree nor Disagree 50
Somewhat Agree 27
Strongly Agree - Top reason 43
pickup Strongly Disagree 125
Somewhat Disagree 52
Neither Agree nor Disagree 81
Somewhat Agree 51
Strongly Agree - Top reason 65
Name: count, dtype: int64
In [190]:
sns.catplot(data=grocersmall, x='Convenience_R', hue='mode', kind='count', aspect = 2)
plt.show()
In [191]:
grocersmall['Findability_R'] = pd.Categorical(grocersmall['Findability_R'], categories=importance_ranking, ordered=True)
grocersmall.groupby('mode', dropna=True).Findability_R.value_counts().sort_index()
Out[191]:
mode Findability_R
delivery Strongly Disagree 12
Somewhat Disagree 34
Neither Agree nor Disagree 59
Somewhat Agree 93
Strongly Agree - Top reason 49
pickup Strongly Disagree 30
Somewhat Disagree 36
Neither Agree nor Disagree 93
Somewhat Agree 158
Strongly Agree - Top reason 57
Name: count, dtype: int64
In [192]:
sns.catplot(data=grocersmall, x='Findability_R', hue='mode', kind='count', aspect = 2)
plt.show()
In [193]:
grocersmall.groupby(['mode'], dropna=True).mode.value_counts()
Out[193]:
mode delivery 251 pickup 376 Name: count, dtype: int64
In [194]:
sns.catplot(data=grocersmall, x='mode', kind='count', hue='mode', aspect = 2)
plt.show()
In [195]:
Reasons_df=pd.DataFrame()
In [196]:
Reasons_df=pd.DataFrame()
cols = ['Speed_R', 'Quality_R', 'Saving_R', 'Convenience_R',
'Limitations_R', 'Novelty_R', 'Findability_R']
Reasons_df = grocersmall[cols].copy()
In [197]:
grocersmall.reject_sub.unique()
Out[197]:
array(['Never', '3-4 times', '1-2 times', '5-7 times', nan,
'8 or more times'], dtype=object)
In [ ]:
In [198]:
frequency_order=['Never', '1-2 imes', '3-4 times', '5-7 times', '8 or more times' ]
importance_ranking = ['Strongly Disagree', 'Somewhat Disagree', 'Neither Agree nor Disagree', 'Somewhat Agree', 'Strongly Agree - Top reason']
grocersmall['Speed_R'] = pd.Categorical(grocersmall['Speed_R'], categories=importance_ranking, ordered=True)
grocersmall['Speed_R'].value_counts().sort_index()
grocersmall['Speed_R'].describe()
Out[198]:
count 621 unique 5 top Strongly Agree - Top reason freq 370 Name: Speed_R, dtype: object
In [230]:
import pandas as pd
import numpy as np
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import linkage
Likert_cols_original = ["Speed_R", "Quality_R", "Saving_R", "Novelty_R",
"Convenience_R", "Limitations_R", "Findability_R"]
# Creating mapping dictionary for YOUR specific response format
likert_map = {
"Strongly Disagree": 1,
"Somewhat Disagree": 2,
"Neither Agree nor Disagree": 3,
"Somewhat Agree": 4,
"Strongly Agree - Top reason": 5}
# Step 3: Creating NEW numeric columns by mapping the text
for col in Likert_cols_original:
grocersmall[col + "_num"] = grocersmall[col].map(likert_map)
# Step 4: Verifying the encoding worked
Likert_cols_numeric = [col + "_num" for col in Likert_cols_original]
# Step 5: Cleaning and converting
df_clean = grocersmall[Likert_cols_numeric].dropna()
X = df_clean.to_numpy(dtype=float)
print("X shape:", X.shape)
print("X dtype:", X.dtype)
# Step 6: Clustering
Y = pdist(X, metric='cityblock')
Z = linkage(Y, method='average')
print("Success! Linkage matrix shape:", Z.shape)
X shape: (621, 7) X dtype: float64 Success! Linkage matrix shape: (620, 4)
In [231]:
from scipy.cluster.hierarchy import dendrogram
import matplotlib.pyplot as plt
# Create the dendrogram
plt.figure(figsize=(10, 7))
dendrogram(Z)
Out[231]:
{'icoord': [[5.0, 5.0, 15.0, 15.0],
[25.0, 25.0, 35.0, 35.0],
[10.0, 10.0, 30.0, 30.0],
[45.0, 45.0, 55.0, 55.0],
[65.0, 65.0, 75.0, 75.0],
[50.0, 50.0, 70.0, 70.0],
[105.0, 105.0, 115.0, 115.0],
[125.0, 125.0, 135.0, 135.0],
[110.0, 110.0, 130.0, 130.0],
[95.0, 95.0, 120.0, 120.0],
[85.0, 85.0, 107.5, 107.5],
[60.0, 60.0, 96.25, 96.25],
[20.0, 20.0, 78.125, 78.125],
[155.0, 155.0, 165.0, 165.0],
[195.0, 195.0, 205.0, 205.0],
[185.0, 185.0, 200.0, 200.0],
[175.0, 175.0, 192.5, 192.5],
[160.0, 160.0, 183.75, 183.75],
[145.0, 145.0, 171.875, 171.875],
[215.0, 215.0, 225.0, 225.0],
[235.0, 235.0, 245.0, 245.0],
[220.0, 220.0, 240.0, 240.0],
[265.0, 265.0, 275.0, 275.0],
[285.0, 285.0, 295.0, 295.0],
[270.0, 270.0, 290.0, 290.0],
[255.0, 255.0, 280.0, 280.0],
[230.0, 230.0, 267.5, 267.5],
[158.4375, 158.4375, 248.75, 248.75],
[305.0, 305.0, 315.0, 315.0],
[335.0, 335.0, 345.0, 345.0],
[325.0, 325.0, 340.0, 340.0],
[310.0, 310.0, 332.5, 332.5],
[355.0, 355.0, 365.0, 365.0],
[375.0, 375.0, 385.0, 385.0],
[360.0, 360.0, 380.0, 380.0],
[395.0, 395.0, 405.0, 405.0],
[415.0, 415.0, 425.0, 425.0],
[445.0, 445.0, 455.0, 455.0],
[465.0, 465.0, 475.0, 475.0],
[450.0, 450.0, 470.0, 470.0],
[435.0, 435.0, 460.0, 460.0],
[495.0, 495.0, 505.0, 505.0],
[515.0, 515.0, 525.0, 525.0],
[500.0, 500.0, 520.0, 520.0],
[485.0, 485.0, 510.0, 510.0],
[447.5, 447.5, 497.5, 497.5],
[420.0, 420.0, 472.5, 472.5],
[400.0, 400.0, 446.25, 446.25],
[370.0, 370.0, 423.125, 423.125],
[321.25, 321.25, 396.5625, 396.5625],
[203.59375, 203.59375, 358.90625, 358.90625],
[49.0625, 49.0625, 281.25, 281.25],
[535.0, 535.0, 545.0, 545.0],
[575.0, 575.0, 585.0, 585.0],
[565.0, 565.0, 580.0, 580.0],
[555.0, 555.0, 572.5, 572.5],
[595.0, 595.0, 605.0, 605.0],
[625.0, 625.0, 635.0, 635.0],
[615.0, 615.0, 630.0, 630.0],
[600.0, 600.0, 622.5, 622.5],
[645.0, 645.0, 655.0, 655.0],
[665.0, 665.0, 675.0, 675.0],
[685.0, 685.0, 695.0, 695.0],
[670.0, 670.0, 690.0, 690.0],
[650.0, 650.0, 680.0, 680.0],
[611.25, 611.25, 665.0, 665.0],
[563.75, 563.75, 638.125, 638.125],
[540.0, 540.0, 600.9375, 600.9375],
[165.15625, 165.15625, 570.46875, 570.46875],
[705.0, 705.0, 715.0, 715.0],
[725.0, 725.0, 735.0, 735.0],
[710.0, 710.0, 730.0, 730.0],
[755.0, 755.0, 765.0, 765.0],
[745.0, 745.0, 760.0, 760.0],
[775.0, 775.0, 785.0, 785.0],
[805.0, 805.0, 815.0, 815.0],
[795.0, 795.0, 810.0, 810.0],
[780.0, 780.0, 802.5, 802.5],
[835.0, 835.0, 845.0, 845.0],
[855.0, 855.0, 865.0, 865.0],
[875.0, 875.0, 885.0, 885.0],
[860.0, 860.0, 880.0, 880.0],
[840.0, 840.0, 870.0, 870.0],
[825.0, 825.0, 855.0, 855.0],
[905.0, 905.0, 915.0, 915.0],
[895.0, 895.0, 910.0, 910.0],
[935.0, 935.0, 945.0, 945.0],
[925.0, 925.0, 940.0, 940.0],
[965.0, 965.0, 975.0, 975.0],
[955.0, 955.0, 970.0, 970.0],
[932.5, 932.5, 962.5, 962.5],
[985.0, 985.0, 995.0, 995.0],
[1005.0, 1005.0, 1015.0, 1015.0],
[990.0, 990.0, 1010.0, 1010.0],
[947.5, 947.5, 1000.0, 1000.0],
[1055.0, 1055.0, 1065.0, 1065.0],
[1045.0, 1045.0, 1060.0, 1060.0],
[1035.0, 1035.0, 1052.5, 1052.5],
[1025.0, 1025.0, 1043.75, 1043.75],
[1085.0, 1085.0, 1095.0, 1095.0],
[1115.0, 1115.0, 1125.0, 1125.0],
[1105.0, 1105.0, 1120.0, 1120.0],
[1090.0, 1090.0, 1112.5, 1112.5],
[1075.0, 1075.0, 1101.25, 1101.25],
[1034.375, 1034.375, 1088.125, 1088.125],
[973.75, 973.75, 1061.25, 1061.25],
[902.5, 902.5, 1017.5, 1017.5],
[840.0, 840.0, 960.0, 960.0],
[791.25, 791.25, 900.0, 900.0],
[752.5, 752.5, 845.625, 845.625],
[1145.0, 1145.0, 1155.0, 1155.0],
[1135.0, 1135.0, 1150.0, 1150.0],
[1165.0, 1165.0, 1175.0, 1175.0],
[1185.0, 1185.0, 1195.0, 1195.0],
[1170.0, 1170.0, 1190.0, 1190.0],
[1205.0, 1205.0, 1215.0, 1215.0],
[1225.0, 1225.0, 1235.0, 1235.0],
[1210.0, 1210.0, 1230.0, 1230.0],
[1180.0, 1180.0, 1220.0, 1220.0],
[1142.5, 1142.5, 1200.0, 1200.0],
[1245.0, 1245.0, 1255.0, 1255.0],
[1265.0, 1265.0, 1275.0, 1275.0],
[1250.0, 1250.0, 1270.0, 1270.0],
[1285.0, 1285.0, 1295.0, 1295.0],
[1305.0, 1305.0, 1315.0, 1315.0],
[1290.0, 1290.0, 1310.0, 1310.0],
[1325.0, 1325.0, 1335.0, 1335.0],
[1300.0, 1300.0, 1330.0, 1330.0],
[1345.0, 1345.0, 1355.0, 1355.0],
[1365.0, 1365.0, 1375.0, 1375.0],
[1350.0, 1350.0, 1370.0, 1370.0],
[1385.0, 1385.0, 1395.0, 1395.0],
[1405.0, 1405.0, 1415.0, 1415.0],
[1425.0, 1425.0, 1435.0, 1435.0],
[1410.0, 1410.0, 1430.0, 1430.0],
[1390.0, 1390.0, 1420.0, 1420.0],
[1360.0, 1360.0, 1405.0, 1405.0],
[1315.0, 1315.0, 1382.5, 1382.5],
[1260.0, 1260.0, 1348.75, 1348.75],
[1171.25, 1171.25, 1304.375, 1304.375],
[1455.0, 1455.0, 1465.0, 1465.0],
[1475.0, 1475.0, 1485.0, 1485.0],
[1460.0, 1460.0, 1480.0, 1480.0],
[1445.0, 1445.0, 1470.0, 1470.0],
[1505.0, 1505.0, 1515.0, 1515.0],
[1495.0, 1495.0, 1510.0, 1510.0],
[1525.0, 1525.0, 1535.0, 1535.0],
[1545.0, 1545.0, 1555.0, 1555.0],
[1530.0, 1530.0, 1550.0, 1550.0],
[1502.5, 1502.5, 1540.0, 1540.0],
[1575.0, 1575.0, 1585.0, 1585.0],
[1565.0, 1565.0, 1580.0, 1580.0],
[1595.0, 1595.0, 1605.0, 1605.0],
[1625.0, 1625.0, 1635.0, 1635.0],
[1645.0, 1645.0, 1655.0, 1655.0],
[1665.0, 1665.0, 1675.0, 1675.0],
[1685.0, 1685.0, 1695.0, 1695.0],
[1670.0, 1670.0, 1690.0, 1690.0],
[1650.0, 1650.0, 1680.0, 1680.0],
[1630.0, 1630.0, 1665.0, 1665.0],
[1615.0, 1615.0, 1647.5, 1647.5],
[1600.0, 1600.0, 1631.25, 1631.25],
[1572.5, 1572.5, 1615.625, 1615.625],
[1521.25, 1521.25, 1594.0625, 1594.0625],
[1457.5, 1457.5, 1557.65625, 1557.65625],
[1715.0, 1715.0, 1725.0, 1725.0],
[1705.0, 1705.0, 1720.0, 1720.0],
[1745.0, 1745.0, 1755.0, 1755.0],
[1765.0, 1765.0, 1775.0, 1775.0],
[1750.0, 1750.0, 1770.0, 1770.0],
[1735.0, 1735.0, 1760.0, 1760.0],
[1712.5, 1712.5, 1747.5, 1747.5],
[1785.0, 1785.0, 1795.0, 1795.0],
[1815.0, 1815.0, 1825.0, 1825.0],
[1845.0, 1845.0, 1855.0, 1855.0],
[1835.0, 1835.0, 1850.0, 1850.0],
[1820.0, 1820.0, 1842.5, 1842.5],
[1805.0, 1805.0, 1831.25, 1831.25],
[1865.0, 1865.0, 1875.0, 1875.0],
[1885.0, 1885.0, 1895.0, 1895.0],
[1945.0, 1945.0, 1955.0, 1955.0],
[1935.0, 1935.0, 1950.0, 1950.0],
[1925.0, 1925.0, 1942.5, 1942.5],
[1915.0, 1915.0, 1933.75, 1933.75],
[1905.0, 1905.0, 1924.375, 1924.375],
[1890.0, 1890.0, 1914.6875, 1914.6875],
[1870.0, 1870.0, 1902.34375, 1902.34375],
[1975.0, 1975.0, 1985.0, 1985.0],
[2005.0, 2005.0, 2015.0, 2015.0],
[1995.0, 1995.0, 2010.0, 2010.0],
[1980.0, 1980.0, 2002.5, 2002.5],
[2035.0, 2035.0, 2045.0, 2045.0],
[2055.0, 2055.0, 2065.0, 2065.0],
[2040.0, 2040.0, 2060.0, 2060.0],
[2025.0, 2025.0, 2050.0, 2050.0],
[1991.25, 1991.25, 2037.5, 2037.5],
[1965.0, 1965.0, 2014.375, 2014.375],
[2075.0, 2075.0, 2085.0, 2085.0],
[2095.0, 2095.0, 2105.0, 2105.0],
[2115.0, 2115.0, 2125.0, 2125.0],
[2100.0, 2100.0, 2120.0, 2120.0],
[2080.0, 2080.0, 2110.0, 2110.0],
[1989.6875, 1989.6875, 2095.0, 2095.0],
[1886.171875, 1886.171875, 2042.34375, 2042.34375],
[1818.125, 1818.125, 1964.2578125, 1964.2578125],
[2135.0, 2135.0, 2145.0, 2145.0],
[2155.0, 2155.0, 2165.0, 2165.0],
[2140.0, 2140.0, 2160.0, 2160.0],
[2185.0, 2185.0, 2195.0, 2195.0],
[2175.0, 2175.0, 2190.0, 2190.0],
[2205.0, 2205.0, 2215.0, 2215.0],
[2225.0, 2225.0, 2235.0, 2235.0],
[2255.0, 2255.0, 2265.0, 2265.0],
[2245.0, 2245.0, 2260.0, 2260.0],
[2275.0, 2275.0, 2285.0, 2285.0],
[2295.0, 2295.0, 2305.0, 2305.0],
[2280.0, 2280.0, 2300.0, 2300.0],
[2252.5, 2252.5, 2290.0, 2290.0],
[2230.0, 2230.0, 2271.25, 2271.25],
[2325.0, 2325.0, 2335.0, 2335.0],
[2315.0, 2315.0, 2330.0, 2330.0],
[2250.625, 2250.625, 2322.5, 2322.5],
[2210.0, 2210.0, 2286.5625, 2286.5625],
[2182.5, 2182.5, 2248.28125, 2248.28125],
[2150.0, 2150.0, 2215.390625, 2215.390625],
[1891.19140625, 1891.19140625, 2182.6953125, 2182.6953125],
[1790.0, 1790.0, 2036.943359375, 2036.943359375],
[1730.0, 1730.0, 1913.4716796875, 1913.4716796875],
[1507.578125, 1507.578125, 1821.73583984375, 1821.73583984375],
[1237.8125, 1237.8125, 1664.656982421875, 1664.656982421875],
[2345.0, 2345.0, 2355.0, 2355.0],
[2375.0, 2375.0, 2385.0, 2385.0],
[2365.0, 2365.0, 2380.0, 2380.0],
[2350.0, 2350.0, 2372.5, 2372.5],
[2405.0, 2405.0, 2415.0, 2415.0],
[2425.0, 2425.0, 2435.0, 2435.0],
[2410.0, 2410.0, 2430.0, 2430.0],
[2445.0, 2445.0, 2455.0, 2455.0],
[2475.0, 2475.0, 2485.0, 2485.0],
[2465.0, 2465.0, 2480.0, 2480.0],
[2450.0, 2450.0, 2472.5, 2472.5],
[2495.0, 2495.0, 2505.0, 2505.0],
[2515.0, 2515.0, 2525.0, 2525.0],
[2545.0, 2545.0, 2555.0, 2555.0],
[2535.0, 2535.0, 2550.0, 2550.0],
[2520.0, 2520.0, 2542.5, 2542.5],
[2500.0, 2500.0, 2531.25, 2531.25],
[2461.25, 2461.25, 2515.625, 2515.625],
[2420.0, 2420.0, 2488.4375, 2488.4375],
[2395.0, 2395.0, 2454.21875, 2454.21875],
[2565.0, 2565.0, 2575.0, 2575.0],
[2585.0, 2585.0, 2595.0, 2595.0],
[2570.0, 2570.0, 2590.0, 2590.0],
[2605.0, 2605.0, 2615.0, 2615.0],
[2580.0, 2580.0, 2610.0, 2610.0],
[2625.0, 2625.0, 2635.0, 2635.0],
[2645.0, 2645.0, 2655.0, 2655.0],
[2630.0, 2630.0, 2650.0, 2650.0],
[2595.0, 2595.0, 2640.0, 2640.0],
[2665.0, 2665.0, 2675.0, 2675.0],
[2685.0, 2685.0, 2695.0, 2695.0],
[2705.0, 2705.0, 2715.0, 2715.0],
[2690.0, 2690.0, 2710.0, 2710.0],
[2670.0, 2670.0, 2700.0, 2700.0],
[2745.0, 2745.0, 2755.0, 2755.0],
[2735.0, 2735.0, 2750.0, 2750.0],
[2725.0, 2725.0, 2742.5, 2742.5],
[2685.0, 2685.0, 2733.75, 2733.75],
[2617.5, 2617.5, 2709.375, 2709.375],
[2424.609375, 2424.609375, 2663.4375, 2663.4375],
[2775.0, 2775.0, 2785.0, 2785.0],
[2815.0, 2815.0, 2825.0, 2825.0],
[2805.0, 2805.0, 2820.0, 2820.0],
[2795.0, 2795.0, 2812.5, 2812.5],
[2780.0, 2780.0, 2803.75, 2803.75],
[2765.0, 2765.0, 2791.875, 2791.875],
[2845.0, 2845.0, 2855.0, 2855.0],
[2835.0, 2835.0, 2850.0, 2850.0],
[2778.4375, 2778.4375, 2842.5, 2842.5],
[2544.0234375, 2544.0234375, 2810.46875, 2810.46875],
[2361.25, 2361.25, 2677.24609375, 2677.24609375],
[1451.2347412109375, 1451.2347412109375, 2519.248046875, 2519.248046875],
[2875.0, 2875.0, 2885.0, 2885.0],
[2865.0, 2865.0, 2880.0, 2880.0],
[2895.0, 2895.0, 2905.0, 2905.0],
[2915.0, 2915.0, 2925.0, 2925.0],
[2935.0, 2935.0, 2945.0, 2945.0],
[2920.0, 2920.0, 2940.0, 2940.0],
[2955.0, 2955.0, 2965.0, 2965.0],
[2975.0, 2975.0, 2985.0, 2985.0],
[2960.0, 2960.0, 2980.0, 2980.0],
[2930.0, 2930.0, 2970.0, 2970.0],
[2900.0, 2900.0, 2950.0, 2950.0],
[3005.0, 3005.0, 3015.0, 3015.0],
[2995.0, 2995.0, 3010.0, 3010.0],
[3025.0, 3025.0, 3035.0, 3035.0],
[3045.0, 3045.0, 3055.0, 3055.0],
[3030.0, 3030.0, 3050.0, 3050.0],
[3002.5, 3002.5, 3040.0, 3040.0],
[2925.0, 2925.0, 3021.25, 3021.25],
[2872.5, 2872.5, 2973.125, 2973.125],
[3065.0, 3065.0, 3075.0, 3075.0],
[3095.0, 3095.0, 3105.0, 3105.0],
[3085.0, 3085.0, 3100.0, 3100.0],
[3070.0, 3070.0, 3092.5, 3092.5],
[3125.0, 3125.0, 3135.0, 3135.0],
[3115.0, 3115.0, 3130.0, 3130.0],
[3081.25, 3081.25, 3122.5, 3122.5],
[3155.0, 3155.0, 3165.0, 3165.0],
[3175.0, 3175.0, 3185.0, 3185.0],
[3205.0, 3205.0, 3215.0, 3215.0],
[3195.0, 3195.0, 3210.0, 3210.0],
[3180.0, 3180.0, 3202.5, 3202.5],
[3160.0, 3160.0, 3191.25, 3191.25],
[3145.0, 3145.0, 3175.625, 3175.625],
[3101.875, 3101.875, 3160.3125, 3160.3125],
[3225.0, 3225.0, 3235.0, 3235.0],
[3245.0, 3245.0, 3255.0, 3255.0],
[3230.0, 3230.0, 3250.0, 3250.0],
[3275.0, 3275.0, 3285.0, 3285.0],
[3265.0, 3265.0, 3280.0, 3280.0],
[3240.0, 3240.0, 3272.5, 3272.5],
[3131.09375, 3131.09375, 3256.25, 3256.25],
[3295.0, 3295.0, 3305.0, 3305.0],
[3315.0, 3315.0, 3325.0, 3325.0],
[3300.0, 3300.0, 3320.0, 3320.0],
[3345.0, 3345.0, 3355.0, 3355.0],
[3335.0, 3335.0, 3350.0, 3350.0],
[3395.0, 3395.0, 3405.0, 3405.0],
[3385.0, 3385.0, 3400.0, 3400.0],
[3375.0, 3375.0, 3392.5, 3392.5],
[3415.0, 3415.0, 3425.0, 3425.0],
[3383.75, 3383.75, 3420.0, 3420.0],
[3365.0, 3365.0, 3401.875, 3401.875],
[3342.5, 3342.5, 3383.4375, 3383.4375],
[3435.0, 3435.0, 3445.0, 3445.0],
[3455.0, 3455.0, 3465.0, 3465.0],
[3440.0, 3440.0, 3460.0, 3460.0],
[3475.0, 3475.0, 3485.0, 3485.0],
[3495.0, 3495.0, 3505.0, 3505.0],
[3480.0, 3480.0, 3500.0, 3500.0],
[3450.0, 3450.0, 3490.0, 3490.0],
[3362.96875, 3362.96875, 3470.0, 3470.0],
[3310.0, 3310.0, 3416.484375, 3416.484375],
[3525.0, 3525.0, 3535.0, 3535.0],
[3545.0, 3545.0, 3555.0, 3555.0],
[3530.0, 3530.0, 3550.0, 3550.0],
[3575.0, 3575.0, 3585.0, 3585.0],
[3615.0, 3615.0, 3625.0, 3625.0],
[3605.0, 3605.0, 3620.0, 3620.0],
[3595.0, 3595.0, 3612.5, 3612.5],
[3635.0, 3635.0, 3645.0, 3645.0],
[3603.75, 3603.75, 3640.0, 3640.0],
[3580.0, 3580.0, 3621.875, 3621.875],
[3565.0, 3565.0, 3600.9375, 3600.9375],
[3540.0, 3540.0, 3582.96875, 3582.96875],
[3515.0, 3515.0, 3561.484375, 3561.484375],
[3655.0, 3655.0, 3665.0, 3665.0],
[3675.0, 3675.0, 3685.0, 3685.0],
[3695.0, 3695.0, 3705.0, 3705.0],
[3680.0, 3680.0, 3700.0, 3700.0],
[3660.0, 3660.0, 3690.0, 3690.0],
[3715.0, 3715.0, 3725.0, 3725.0],
[3735.0, 3735.0, 3745.0, 3745.0],
[3720.0, 3720.0, 3740.0, 3740.0],
[3675.0, 3675.0, 3730.0, 3730.0],
[3755.0, 3755.0, 3765.0, 3765.0],
[3775.0, 3775.0, 3785.0, 3785.0],
[3760.0, 3760.0, 3780.0, 3780.0],
[3795.0, 3795.0, 3805.0, 3805.0],
[3825.0, 3825.0, 3835.0, 3835.0],
[3815.0, 3815.0, 3830.0, 3830.0],
[3800.0, 3800.0, 3822.5, 3822.5],
[3855.0, 3855.0, 3865.0, 3865.0],
[3845.0, 3845.0, 3860.0, 3860.0],
[3885.0, 3885.0, 3895.0, 3895.0],
[3905.0, 3905.0, 3915.0, 3915.0],
[3890.0, 3890.0, 3910.0, 3910.0],
[3875.0, 3875.0, 3900.0, 3900.0],
[3852.5, 3852.5, 3887.5, 3887.5],
[3811.25, 3811.25, 3870.0, 3870.0],
[3770.0, 3770.0, 3840.625, 3840.625],
[3702.5, 3702.5, 3805.3125, 3805.3125],
[3925.0, 3925.0, 3935.0, 3935.0],
[3945.0, 3945.0, 3955.0, 3955.0],
[3930.0, 3930.0, 3950.0, 3950.0],
[3965.0, 3965.0, 3975.0, 3975.0],
[3985.0, 3985.0, 3995.0, 3995.0],
[3970.0, 3970.0, 3990.0, 3990.0],
[4025.0, 4025.0, 4035.0, 4035.0],
[4015.0, 4015.0, 4030.0, 4030.0],
[4005.0, 4005.0, 4022.5, 4022.5],
[4045.0, 4045.0, 4055.0, 4055.0],
[4065.0, 4065.0, 4075.0, 4075.0],
[4050.0, 4050.0, 4070.0, 4070.0],
[4013.75, 4013.75, 4060.0, 4060.0],
[3980.0, 3980.0, 4036.875, 4036.875],
[4105.0, 4105.0, 4115.0, 4115.0],
[4095.0, 4095.0, 4110.0, 4110.0],
[4085.0, 4085.0, 4102.5, 4102.5],
[4008.4375, 4008.4375, 4093.75, 4093.75],
[3940.0, 3940.0, 4051.09375, 4051.09375],
[3753.90625, 3753.90625, 3995.546875, 3995.546875],
[4135.0, 4135.0, 4145.0, 4145.0],
[4165.0, 4165.0, 4175.0, 4175.0],
[4155.0, 4155.0, 4170.0, 4170.0],
[4195.0, 4195.0, 4205.0, 4205.0],
[4185.0, 4185.0, 4200.0, 4200.0],
[4162.5, 4162.5, 4192.5, 4192.5],
[4140.0, 4140.0, 4177.5, 4177.5],
[4125.0, 4125.0, 4158.75, 4158.75],
[4215.0, 4215.0, 4225.0, 4225.0],
[4235.0, 4235.0, 4245.0, 4245.0],
[4220.0, 4220.0, 4240.0, 4240.0],
[4141.875, 4141.875, 4230.0, 4230.0],
[4265.0, 4265.0, 4275.0, 4275.0],
[4255.0, 4255.0, 4270.0, 4270.0],
[4285.0, 4285.0, 4295.0, 4295.0],
[4305.0, 4305.0, 4315.0, 4315.0],
[4290.0, 4290.0, 4310.0, 4310.0],
[4335.0, 4335.0, 4345.0, 4345.0],
[4325.0, 4325.0, 4340.0, 4340.0],
[4300.0, 4300.0, 4332.5, 4332.5],
[4262.5, 4262.5, 4316.25, 4316.25],
[4365.0, 4365.0, 4375.0, 4375.0],
[4355.0, 4355.0, 4370.0, 4370.0],
[4385.0, 4385.0, 4395.0, 4395.0],
[4405.0, 4405.0, 4415.0, 4415.0],
[4425.0, 4425.0, 4435.0, 4435.0],
[4445.0, 4445.0, 4455.0, 4455.0],
[4485.0, 4485.0, 4495.0, 4495.0],
[4475.0, 4475.0, 4490.0, 4490.0],
[4465.0, 4465.0, 4482.5, 4482.5],
[4450.0, 4450.0, 4473.75, 4473.75],
[4430.0, 4430.0, 4461.875, 4461.875],
[4410.0, 4410.0, 4445.9375, 4445.9375],
[4390.0, 4390.0, 4427.96875, 4427.96875],
[4362.5, 4362.5, 4408.984375, 4408.984375],
[4505.0, 4505.0, 4515.0, 4515.0],
[4525.0, 4525.0, 4535.0, 4535.0],
[4545.0, 4545.0, 4555.0, 4555.0],
[4530.0, 4530.0, 4550.0, 4550.0],
[4575.0, 4575.0, 4585.0, 4585.0],
[4565.0, 4565.0, 4580.0, 4580.0],
[4540.0, 4540.0, 4572.5, 4572.5],
[4510.0, 4510.0, 4556.25, 4556.25],
[4385.7421875, 4385.7421875, 4533.125, 4533.125],
[4289.375, 4289.375, 4459.43359375, 4459.43359375],
[4185.9375, 4185.9375, 4374.404296875, 4374.404296875],
[3874.7265625, 3874.7265625, 4280.1708984375, 4280.1708984375],
[3538.2421875, 3538.2421875, 4077.44873046875, 4077.44873046875],
[4605.0, 4605.0, 4615.0, 4615.0],
[4595.0, 4595.0, 4610.0, 4610.0],
[4635.0, 4635.0, 4645.0, 4645.0],
[4655.0, 4655.0, 4665.0, 4665.0],
[4640.0, 4640.0, 4660.0, 4660.0],
[4675.0, 4675.0, 4685.0, 4685.0],
[4695.0, 4695.0, 4705.0, 4705.0],
[4680.0, 4680.0, 4700.0, 4700.0],
[4650.0, 4650.0, 4690.0, 4690.0],
[4625.0, 4625.0, 4670.0, 4670.0],
[4725.0, 4725.0, 4735.0, 4735.0],
[4715.0, 4715.0, 4730.0, 4730.0],
[4745.0, 4745.0, 4755.0, 4755.0],
[4775.0, 4775.0, 4785.0, 4785.0],
[4765.0, 4765.0, 4780.0, 4780.0],
[4750.0, 4750.0, 4772.5, 4772.5],
[4722.5, 4722.5, 4761.25, 4761.25],
[4647.5, 4647.5, 4741.875, 4741.875],
[4602.5, 4602.5, 4694.6875, 4694.6875],
[4805.0, 4805.0, 4815.0, 4815.0],
[4825.0, 4825.0, 4835.0, 4835.0],
[4845.0, 4845.0, 4855.0, 4855.0],
[4830.0, 4830.0, 4850.0, 4850.0],
[4810.0, 4810.0, 4840.0, 4840.0],
[4795.0, 4795.0, 4825.0, 4825.0],
[4865.0, 4865.0, 4875.0, 4875.0],
[4885.0, 4885.0, 4895.0, 4895.0],
[4905.0, 4905.0, 4915.0, 4915.0],
[4890.0, 4890.0, 4910.0, 4910.0],
[4925.0, 4925.0, 4935.0, 4935.0],
[4955.0, 4955.0, 4965.0, 4965.0],
[4945.0, 4945.0, 4960.0, 4960.0],
[4930.0, 4930.0, 4952.5, 4952.5],
[4900.0, 4900.0, 4941.25, 4941.25],
[4870.0, 4870.0, 4920.625, 4920.625],
[4810.0, 4810.0, 4895.3125, 4895.3125],
[4648.59375, 4648.59375, 4852.65625, 4852.65625],
[3807.845458984375, 3807.845458984375, 4750.625, 4750.625],
[3363.2421875, 3363.2421875, 4279.2352294921875, 4279.2352294921875],
[4975.0, 4975.0, 4985.0, 4985.0],
[4995.0, 4995.0, 5005.0, 5005.0],
[4980.0, 4980.0, 5000.0, 5000.0],
[5035.0, 5035.0, 5045.0, 5045.0],
[5025.0, 5025.0, 5040.0, 5040.0],
[5015.0, 5015.0, 5032.5, 5032.5],
[5055.0, 5055.0, 5065.0, 5065.0],
[5075.0, 5075.0, 5085.0, 5085.0],
[5095.0, 5095.0, 5105.0, 5105.0],
[5125.0, 5125.0, 5135.0, 5135.0],
[5115.0, 5115.0, 5130.0, 5130.0],
[5100.0, 5100.0, 5122.5, 5122.5],
[5080.0, 5080.0, 5111.25, 5111.25],
[5060.0, 5060.0, 5095.625, 5095.625],
[5023.75, 5023.75, 5077.8125, 5077.8125],
[4990.0, 4990.0, 5050.78125, 5050.78125],
[5145.0, 5145.0, 5155.0, 5155.0],
[5165.0, 5165.0, 5175.0, 5175.0],
[5150.0, 5150.0, 5170.0, 5170.0],
[5205.0, 5205.0, 5215.0, 5215.0],
[5195.0, 5195.0, 5210.0, 5210.0],
[5185.0, 5185.0, 5202.5, 5202.5],
[5160.0, 5160.0, 5193.75, 5193.75],
[5245.0, 5245.0, 5255.0, 5255.0],
[5235.0, 5235.0, 5250.0, 5250.0],
[5225.0, 5225.0, 5242.5, 5242.5],
[5176.875, 5176.875, 5233.75, 5233.75],
[5020.390625, 5020.390625, 5205.3125, 5205.3125],
[5265.0, 5265.0, 5275.0, 5275.0],
[5305.0, 5305.0, 5315.0, 5315.0],
[5295.0, 5295.0, 5310.0, 5310.0],
[5285.0, 5285.0, 5302.5, 5302.5],
[5270.0, 5270.0, 5293.75, 5293.75],
[5325.0, 5325.0, 5335.0, 5335.0],
[5355.0, 5355.0, 5365.0, 5365.0],
[5345.0, 5345.0, 5360.0, 5360.0],
[5330.0, 5330.0, 5352.5, 5352.5],
[5375.0, 5375.0, 5385.0, 5385.0],
[5395.0, 5395.0, 5405.0, 5405.0],
[5380.0, 5380.0, 5400.0, 5400.0],
[5341.25, 5341.25, 5390.0, 5390.0],
[5281.875, 5281.875, 5365.625, 5365.625],
[5425.0, 5425.0, 5435.0, 5435.0],
[5415.0, 5415.0, 5430.0, 5430.0],
[5445.0, 5445.0, 5455.0, 5455.0],
[5422.5, 5422.5, 5450.0, 5450.0],
[5475.0, 5475.0, 5485.0, 5485.0],
[5465.0, 5465.0, 5480.0, 5480.0],
[5436.25, 5436.25, 5472.5, 5472.5],
[5495.0, 5495.0, 5505.0, 5505.0],
[5515.0, 5515.0, 5525.0, 5525.0],
[5500.0, 5500.0, 5520.0, 5520.0],
[5535.0, 5535.0, 5545.0, 5545.0],
[5575.0, 5575.0, 5585.0, 5585.0],
[5565.0, 5565.0, 5580.0, 5580.0],
[5555.0, 5555.0, 5572.5, 5572.5],
[5540.0, 5540.0, 5563.75, 5563.75],
[5510.0, 5510.0, 5551.875, 5551.875],
[5454.375, 5454.375, 5530.9375, 5530.9375],
[5323.75, 5323.75, 5492.65625, 5492.65625],
[5595.0, 5595.0, 5605.0, 5605.0],
[5625.0, 5625.0, 5635.0, 5635.0],
[5615.0, 5615.0, 5630.0, 5630.0],
[5600.0, 5600.0, 5622.5, 5622.5],
[5655.0, 5655.0, 5665.0, 5665.0],
[5675.0, 5675.0, 5685.0, 5685.0],
[5660.0, 5660.0, 5680.0, 5680.0],
[5645.0, 5645.0, 5670.0, 5670.0],
[5705.0, 5705.0, 5715.0, 5715.0],
[5695.0, 5695.0, 5710.0, 5710.0],
[5725.0, 5725.0, 5735.0, 5735.0],
[5745.0, 5745.0, 5755.0, 5755.0],
[5765.0, 5765.0, 5775.0, 5775.0],
[5785.0, 5785.0, 5795.0, 5795.0],
[5770.0, 5770.0, 5790.0, 5790.0],
[5750.0, 5750.0, 5780.0, 5780.0],
[5730.0, 5730.0, 5765.0, 5765.0],
[5702.5, 5702.5, 5747.5, 5747.5],
[5657.5, 5657.5, 5725.0, 5725.0],
[5611.25, 5611.25, 5691.25, 5691.25],
[5408.203125, 5408.203125, 5651.25, 5651.25],
[5112.8515625, 5112.8515625, 5529.7265625, 5529.7265625],
[3821.2387084960938, 3821.2387084960938, 5321.2890625, 5321.2890625],
[5805.0, 5805.0, 5815.0, 5815.0],
[5835.0, 5835.0, 5845.0, 5845.0],
[5825.0, 5825.0, 5840.0, 5840.0],
[5810.0, 5810.0, 5832.5, 5832.5],
[5875.0, 5875.0, 5885.0, 5885.0],
[5865.0, 5865.0, 5880.0, 5880.0],
[5855.0, 5855.0, 5872.5, 5872.5],
[5895.0, 5895.0, 5905.0, 5905.0],
[5925.0, 5925.0, 5935.0, 5935.0],
[5915.0, 5915.0, 5930.0, 5930.0],
[5900.0, 5900.0, 5922.5, 5922.5],
[5945.0, 5945.0, 5955.0, 5955.0],
[5965.0, 5965.0, 5975.0, 5975.0],
[5950.0, 5950.0, 5970.0, 5970.0],
[5911.25, 5911.25, 5960.0, 5960.0],
[5863.75, 5863.75, 5935.625, 5935.625],
[5821.25, 5821.25, 5899.6875, 5899.6875],
[5985.0, 5985.0, 5995.0, 5995.0],
[6005.0, 6005.0, 6015.0, 6015.0],
[6035.0, 6035.0, 6045.0, 6045.0],
[6025.0, 6025.0, 6040.0, 6040.0],
[6075.0, 6075.0, 6085.0, 6085.0],
[6065.0, 6065.0, 6080.0, 6080.0],
[6105.0, 6105.0, 6115.0, 6115.0],
[6095.0, 6095.0, 6110.0, 6110.0],
[6072.5, 6072.5, 6102.5, 6102.5],
[6055.0, 6055.0, 6087.5, 6087.5],
[6032.5, 6032.5, 6071.25, 6071.25],
[6125.0, 6125.0, 6135.0, 6135.0],
[6155.0, 6155.0, 6165.0, 6165.0],
[6145.0, 6145.0, 6160.0, 6160.0],
[6130.0, 6130.0, 6152.5, 6152.5],
[6051.875, 6051.875, 6141.25, 6141.25],
[6010.0, 6010.0, 6096.5625, 6096.5625],
[5990.0, 5990.0, 6053.28125, 6053.28125],
[5860.46875, 5860.46875, 6021.640625, 6021.640625],
[6195.0, 6195.0, 6205.0, 6205.0],
[6185.0, 6185.0, 6200.0, 6200.0],
[6175.0, 6175.0, 6192.5, 6192.5],
[5941.0546875, 5941.0546875, 6183.75, 6183.75],
[4571.263885498047, 4571.263885498047, 6062.40234375, 6062.40234375],
[3193.671875, 3193.671875, 5316.833114624023, 5316.833114624023],
[2922.8125, 2922.8125, 4255.252494812012, 4255.252494812012],
[1985.2413940429688,
1985.2413940429688,
3589.032497406006,
3589.032497406006],
[799.0625, 799.0625, 2787.1369457244873, 2787.1369457244873],
[720.0, 720.0, 1793.0997228622437, 1793.0997228622437],
[367.8125, 367.8125, 1256.5498614311218, 1256.5498614311218]],
'dcoord': [[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(4.0), np.float64(4.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(2.5), np.float64(2.5), np.float64(1.0)],
[0.0, np.float64(3.4), np.float64(3.4), np.float64(2.5)],
[np.float64(3.0), np.float64(6.0), np.float64(6.0), np.float64(3.4)],
[np.float64(4.0), np.float64(8.3), np.float64(8.3), np.float64(6.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0,
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[np.float64(0.0),
np.float64(3.5),
np.float64(3.5),
np.float64(1.3333333333333333)],
[0.0, np.float64(5.0), np.float64(5.0), np.float64(3.5)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(4.0), np.float64(4.0), np.float64(2.0)],
[np.float64(3.0), np.float64(5.7), np.float64(5.7), np.float64(4.0)],
[np.float64(5.0),
np.float64(6.444444444444445),
np.float64(6.444444444444445),
np.float64(5.7)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(5.0), np.float64(5.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), 0.0],
[np.float64(0.0), np.float64(4.5), np.float64(4.5), np.float64(3.0)],
[0.0, np.float64(3.0), np.float64(3.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(2.5), np.float64(2.5), np.float64(1.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), 0.0],
[np.float64(0.0), np.float64(2.5), np.float64(2.5), np.float64(1.0)],
[0.0, np.float64(3.25), np.float64(3.25), np.float64(2.5)],
[np.float64(2.5),
np.float64(3.6799999999999997),
np.float64(3.6799999999999997),
np.float64(3.25)],
[np.float64(0.0),
np.float64(4.0),
np.float64(4.0),
np.float64(3.6799999999999997)],
[np.float64(3.0),
np.float64(5.333333333333333),
np.float64(5.333333333333333),
np.float64(4.0)],
[np.float64(4.5),
np.float64(6.714285714285714),
np.float64(6.714285714285714),
np.float64(5.333333333333333)],
[np.float64(5.0),
np.float64(7.066666666666666),
np.float64(7.066666666666666),
np.float64(6.714285714285714)],
[np.float64(6.444444444444445),
np.float64(9.173913043478262),
np.float64(9.173913043478262),
np.float64(7.066666666666666)],
[np.float64(8.3),
np.float64(10.456043956043956),
np.float64(10.456043956043956),
np.float64(9.173913043478262)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0, np.float64(5.0), np.float64(5.0), np.float64(3.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(4.0), np.float64(4.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(2.0)],
[np.float64(0.0), np.float64(5.0), np.float64(5.0), np.float64(2.0)],
[np.float64(4.0),
np.float64(5.866666666666667),
np.float64(5.866666666666667),
np.float64(5.0)],
[np.float64(5.0),
np.float64(6.840909090909091),
np.float64(6.840909090909091),
np.float64(5.866666666666667)],
[np.float64(0.0),
np.float64(10.733333333333333),
np.float64(10.733333333333333),
np.float64(6.840909090909091)],
[np.float64(10.456043956043956),
np.float64(11.176470588235293),
np.float64(11.176470588235293),
np.float64(10.733333333333333)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(4.0), np.float64(4.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[np.float64(0.0), np.float64(5.0), np.float64(5.0), np.float64(3.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(4.0), np.float64(4.0), np.float64(2.0)],
[0.0, np.float64(5.0), np.float64(5.0), np.float64(4.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(4.0), np.float64(4.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(1.0),
np.float64(2.6666666666666665),
np.float64(2.6666666666666665),
np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), 0.0],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(2.6666666666666665),
np.float64(3.6666666666666665),
np.float64(3.6666666666666665),
np.float64(3.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(1.0), np.float64(1.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(1.0),
np.float64(1.8333333333333333),
np.float64(1.8333333333333333),
np.float64(1.0)],
[0.0, np.float64(2.6), np.float64(2.6), np.float64(1.8333333333333333)],
[np.float64(2.0),
np.float64(3.8333333333333335),
np.float64(3.8333333333333335),
np.float64(2.6)],
[np.float64(3.6666666666666665),
np.float64(5.199999999999999),
np.float64(5.199999999999999),
np.float64(3.8333333333333335)],
[np.float64(4.0),
np.float64(5.984126984126984),
np.float64(5.984126984126984),
np.float64(5.199999999999999)],
[np.float64(5.0),
np.float64(7.029761904761904),
np.float64(7.029761904761904),
np.float64(5.984126984126984)],
[np.float64(5.0),
np.float64(7.090322580645163),
np.float64(7.090322580645163),
np.float64(7.029761904761904)],
[np.float64(4.0),
np.float64(7.916666666666667),
np.float64(7.916666666666667),
np.float64(7.090322580645163)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(1.0), np.float64(2.5), np.float64(2.5), np.float64(2.0)],
[np.float64(2.0), np.float64(3.75), np.float64(3.75), np.float64(2.5)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(4.0), np.float64(4.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), 0.0],
[np.float64(0.0), np.float64(1.5), np.float64(1.5), np.float64(1.0)],
[0.0, np.float64(2.0), np.float64(2.0), 0.0],
[np.float64(1.5), np.float64(3.25), np.float64(3.25), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(3.0),
np.float64(3.8333333333333335),
np.float64(3.8333333333333335),
np.float64(3.0)],
[np.float64(3.25),
np.float64(4.566666666666667),
np.float64(4.566666666666667),
np.float64(3.8333333333333335)],
[np.float64(4.0),
np.float64(5.125),
np.float64(5.125),
np.float64(4.566666666666667)],
[np.float64(3.75),
np.float64(5.868181818181818),
np.float64(5.868181818181818),
np.float64(5.125)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(4.0), np.float64(4.0), np.float64(0.0)],
[0.0, np.float64(5.0), np.float64(5.0), np.float64(4.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(1.0),
np.float64(2.8333333333333335),
np.float64(2.8333333333333335),
np.float64(1.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0), np.float64(1.5), np.float64(1.5), np.float64(1.0)],
[np.float64(0.0),
np.float64(1.6666666666666667),
np.float64(1.6666666666666667),
np.float64(1.5)],
[0.0, np.float64(2.25), np.float64(2.25), np.float64(1.6666666666666667)],
[np.float64(0.0),
np.float64(2.7777777777777777),
np.float64(2.7777777777777777),
np.float64(2.25)],
[np.float64(2.0),
np.float64(3.757575757575758),
np.float64(3.757575757575758),
np.float64(2.7777777777777777)],
[np.float64(2.8333333333333335),
np.float64(5.285714285714285),
np.float64(5.285714285714285),
np.float64(3.757575757575758)],
[np.float64(5.0),
np.float64(5.885714285714286),
np.float64(5.885714285714286),
np.float64(5.285714285714285)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(2.0)],
[np.float64(2.0),
np.float64(2.6666666666666665),
np.float64(2.6666666666666665),
np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[0.0, np.float64(2.6), np.float64(2.6), np.float64(1.3333333333333333)],
[0.0, np.float64(2.0), np.float64(2.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(1.2), np.float64(1.2), np.float64(1.0)],
[np.float64(0.0),
np.float64(2.3333333333333335),
np.float64(2.3333333333333335),
np.float64(1.2)],
[np.float64(2.0),
np.float64(3.5),
np.float64(3.5),
np.float64(2.3333333333333335)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(1.5), np.float64(1.5), np.float64(1.0)],
[np.float64(1.3333333333333333),
np.float64(2.2),
np.float64(2.2),
np.float64(1.5)],
[0.0, np.float64(2.9), np.float64(2.9), np.float64(2.2)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(2.9),
np.float64(3.8484848484848486),
np.float64(3.8484848484848486),
np.float64(3.0)],
[np.float64(3.5),
np.float64(4.094117647058823),
np.float64(4.094117647058823),
np.float64(3.8484848484848486)],
[np.float64(2.6),
np.float64(4.3395061728395055),
np.float64(4.3395061728395055),
np.float64(4.094117647058823)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(4.0), np.float64(4.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0, np.float64(2.0), np.float64(2.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0), np.float64(1.5), np.float64(1.5), np.float64(1.0)],
[np.float64(0.0),
np.float64(1.7142857142857142),
np.float64(1.7142857142857142),
np.float64(1.5)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(1.7142857142857142),
np.float64(2.3333333333333335),
np.float64(2.3333333333333335),
np.float64(2.0)],
[np.float64(2.0),
np.float64(3.5),
np.float64(3.5),
np.float64(2.3333333333333335)],
[np.float64(3.0),
np.float64(4.309523809523809),
np.float64(4.309523809523809),
np.float64(3.5)],
[np.float64(4.0),
np.float64(4.705882352941177),
np.float64(4.705882352941177),
np.float64(4.309523809523809)],
[np.float64(4.3395061728395055),
np.float64(5.212121212121211),
np.float64(5.212121212121211),
np.float64(4.705882352941177)],
[np.float64(0.0),
np.float64(5.925925925925926),
np.float64(5.925925925925926),
np.float64(5.212121212121211)],
[np.float64(2.6666666666666665),
np.float64(6.21875),
np.float64(6.21875),
np.float64(5.925925925925926)],
[np.float64(5.885714285714286),
np.float64(6.627403846153846),
np.float64(6.627403846153846),
np.float64(6.21875)],
[np.float64(5.868181818181818),
np.float64(6.817921146953405),
np.float64(6.817921146953405),
np.float64(6.627403846153846)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(4.0), np.float64(4.0), np.float64(0.0)],
[np.float64(0.0), np.float64(6.0), np.float64(6.0), np.float64(4.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[np.float64(0.0),
np.float64(2.8),
np.float64(2.8),
np.float64(1.3333333333333333)],
[np.float64(1.3333333333333333),
np.float64(3.1142857142857143),
np.float64(3.1142857142857143),
np.float64(2.8)],
[np.float64(2.0),
np.float64(3.9166666666666665),
np.float64(3.9166666666666665),
np.float64(3.1142857142857143)],
[0.0,
np.float64(4.5625),
np.float64(4.5625),
np.float64(3.9166666666666665)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(2.0), np.float64(2.0), 0.0],
[np.float64(2.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), 0.0],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(3.0),
np.float64(4.166666666666667),
np.float64(4.166666666666667),
np.float64(3.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(3.0), np.float64(4.25), np.float64(4.25), np.float64(3.0)],
[np.float64(4.166666666666667),
np.float64(4.76),
np.float64(4.76),
np.float64(4.25)],
[np.float64(4.5625),
np.float64(5.355882352941176),
np.float64(5.355882352941176),
np.float64(4.76)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0,
np.float64(3.6666666666666665),
np.float64(3.6666666666666665),
np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(4.0), np.float64(4.0), np.float64(0.0)],
[np.float64(3.6666666666666665),
np.float64(6.476190476190477),
np.float64(6.476190476190477),
np.float64(4.0)],
[np.float64(5.355882352941176),
np.float64(7.0864864864864865),
np.float64(7.0864864864864865),
np.float64(6.476190476190477)],
[np.float64(6.0),
np.float64(7.995744680851064),
np.float64(7.995744680851064),
np.float64(7.0864864864864865)],
[np.float64(6.817921146953405),
np.float64(8.396217418944692),
np.float64(8.396217418944692),
np.float64(7.995744680851064)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(2.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(0.0), np.float64(4.0), np.float64(4.0), np.float64(3.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[np.float64(1.0), np.float64(4.5), np.float64(4.5), np.float64(3.0)],
[np.float64(4.0),
np.float64(5.742857142857143),
np.float64(5.742857142857143),
np.float64(4.5)],
[np.float64(3.0),
np.float64(7.9411764705882355),
np.float64(7.9411764705882355),
np.float64(5.742857142857143)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(2.6666666666666665),
np.float64(2.6666666666666665),
np.float64(1.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[np.float64(2.6666666666666665),
np.float64(3.5333333333333337),
np.float64(3.5333333333333337),
np.float64(3.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(0.0), np.float64(3.6), np.float64(3.6), np.float64(3.0)],
[0.0,
np.float64(4.714285714285714),
np.float64(4.714285714285714),
np.float64(3.6)],
[np.float64(3.5333333333333337),
np.float64(5.875),
np.float64(5.875),
np.float64(4.714285714285714)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(4.0), np.float64(4.0), np.float64(0.0)],
[0.0, np.float64(2.0), np.float64(2.0), 0.0],
[0.0, np.float64(5.0), np.float64(5.0), np.float64(2.0)],
[np.float64(4.0), np.float64(6.0), np.float64(6.0), np.float64(5.0)],
[np.float64(5.875),
np.float64(7.392857142857142),
np.float64(7.392857142857142),
np.float64(6.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0,
np.float64(1.6666666666666667),
np.float64(1.6666666666666667),
np.float64(1.0)],
[np.float64(1.0),
np.float64(2.904761904761905),
np.float64(2.904761904761905),
np.float64(1.6666666666666667)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(1.0), np.float64(3.0), np.float64(3.0), np.float64(1.0)],
[np.float64(2.904761904761905),
np.float64(3.4),
np.float64(3.4),
np.float64(3.0)],
[np.float64(2.0),
np.float64(4.111111111111111),
np.float64(4.111111111111111),
np.float64(3.4)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(1.3333333333333333)],
[np.float64(2.0),
np.float64(3.6666666666666665),
np.float64(3.6666666666666665),
np.float64(3.0)],
[0.0,
np.float64(4.3076923076923075),
np.float64(4.3076923076923075),
np.float64(3.6666666666666665)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0), np.float64(1.5), np.float64(1.5), np.float64(1.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(1.5), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(1.5), np.float64(1.5), np.float64(1.0)],
[np.float64(0.0), np.float64(1.6), np.float64(1.6), np.float64(1.5)],
[np.float64(1.3333333333333333),
np.float64(2.0999999999999996),
np.float64(2.0999999999999996),
np.float64(1.6)],
[np.float64(2.0),
np.float64(3.3846153846153846),
np.float64(3.3846153846153846),
np.float64(2.0999999999999996)],
[np.float64(3.0),
np.float64(3.5294117647058822),
np.float64(3.5294117647058822),
np.float64(3.3846153846153846)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0), np.float64(1.5), np.float64(1.5), np.float64(1.0)],
[np.float64(1.0), np.float64(2.25), np.float64(2.25), np.float64(1.5)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(2.25), np.float64(3.5), np.float64(3.5), np.float64(3.0)],
[np.float64(2.0), np.float64(3.9375), np.float64(3.9375), np.float64(3.5)],
[np.float64(3.5294117647058822),
np.float64(4.468518518518518),
np.float64(4.468518518518518),
np.float64(3.9375)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[np.float64(0.0),
np.float64(1.6666666666666667),
np.float64(1.6666666666666667),
np.float64(1.3333333333333333)],
[0.0, np.float64(1.75), np.float64(1.75), np.float64(1.6666666666666667)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(1.75),
np.float64(3.888888888888889),
np.float64(3.888888888888889),
np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(1.0),
np.float64(2.1666666666666665),
np.float64(2.1666666666666665),
np.float64(1.0)],
[np.float64(1.0),
np.float64(3.095238095238095),
np.float64(3.095238095238095),
np.float64(2.1666666666666665)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), np.float64(0.0)],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[np.float64(0.0),
np.float64(1.5),
np.float64(1.5),
np.float64(1.3333333333333333)],
[np.float64(0.0), np.float64(1.6), np.float64(1.6), np.float64(1.5)],
[np.float64(1.0),
np.float64(2.0000000000000004),
np.float64(2.0000000000000004),
np.float64(1.6)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(1.0), np.float64(2.5), np.float64(2.5), np.float64(2.0)],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.5)],
[np.float64(2.0000000000000004),
np.float64(3.6370370370370373),
np.float64(3.6370370370370373),
np.float64(3.0)],
[np.float64(3.095238095238095),
np.float64(4.333333333333333),
np.float64(4.333333333333333),
np.float64(3.6370370370370373)],
[np.float64(3.888888888888889),
np.float64(4.819004524886877),
np.float64(4.819004524886877),
np.float64(4.333333333333333)],
[np.float64(4.468518518518518),
np.float64(5.032141240380263),
np.float64(5.032141240380263),
np.float64(4.819004524886877)],
[np.float64(4.3076923076923075),
np.float64(5.124620060790273),
np.float64(5.124620060790273),
np.float64(5.032141240380263)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(1.0), np.float64(2.5), np.float64(2.5), np.float64(2.0)],
[0.0, np.float64(3.25), np.float64(3.25), np.float64(2.5)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(2.6666666666666665),
np.float64(2.6666666666666665),
np.float64(1.0)],
[np.float64(2.0),
np.float64(3.3333333333333335),
np.float64(3.3333333333333335),
np.float64(2.6666666666666665)],
[np.float64(3.25),
np.float64(4.083333333333333),
np.float64(4.083333333333333),
np.float64(3.3333333333333335)],
[np.float64(3.0),
np.float64(4.901960784313726),
np.float64(4.901960784313726),
np.float64(4.083333333333333)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[0.0,
np.float64(3.6666666666666665),
np.float64(3.6666666666666665),
np.float64(3.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(2.6666666666666665),
np.float64(2.6666666666666665),
np.float64(2.0)],
[np.float64(2.0),
np.float64(3.0),
np.float64(3.0),
np.float64(2.6666666666666665)],
[np.float64(0.0),
np.float64(4.444444444444445),
np.float64(4.444444444444445),
np.float64(3.0)],
[np.float64(3.6666666666666665),
np.float64(5.0519480519480515),
np.float64(5.0519480519480515),
np.float64(4.444444444444445)],
[np.float64(4.901960784313726),
np.float64(5.755555555555555),
np.float64(5.755555555555555),
np.float64(5.0519480519480515)],
[np.float64(5.124620060790273),
np.float64(5.942007797270956),
np.float64(5.942007797270956),
np.float64(5.755555555555555)],
[np.float64(4.111111111111111),
np.float64(6.2216687422166865),
np.float64(6.2216687422166865),
np.float64(5.942007797270956)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), 0.0],
[np.float64(0.0), np.float64(3.5), np.float64(3.5), np.float64(3.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.6666666666666667),
np.float64(1.6666666666666667),
np.float64(1.0)],
[np.float64(1.0),
np.float64(2.3),
np.float64(2.3),
np.float64(1.6666666666666667)],
[np.float64(0.0),
np.float64(3.5714285714285716),
np.float64(3.5714285714285716),
np.float64(2.3)],
[np.float64(2.0),
np.float64(4.611111111111111),
np.float64(4.611111111111111),
np.float64(3.5714285714285716)],
[np.float64(3.5),
np.float64(5.019230769230769),
np.float64(5.019230769230769),
np.float64(4.611111111111111)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(4.0), np.float64(4.0), np.float64(2.0)],
[np.float64(2.0), np.float64(4.25), np.float64(4.25), np.float64(4.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0,
np.float64(4.333333333333333),
np.float64(4.333333333333333),
np.float64(3.0)],
[np.float64(4.25),
np.float64(5.5625),
np.float64(5.5625),
np.float64(4.333333333333333)],
[np.float64(5.019230769230769),
np.float64(5.9754901960784315),
np.float64(5.9754901960784315),
np.float64(5.5625)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0,
np.float64(2.6666666666666665),
np.float64(2.6666666666666665),
np.float64(2.0)],
[np.float64(0.0),
np.float64(3.0),
np.float64(3.0),
np.float64(2.6666666666666665)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(1.3333333333333333),
np.float64(1.3333333333333333),
np.float64(1.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), 0.0],
[np.float64(0.0), np.float64(1.5), np.float64(1.5), np.float64(1.0)],
[np.float64(1.3333333333333333),
np.float64(3.05),
np.float64(3.05),
np.float64(1.5)],
[np.float64(3.0),
np.float64(4.111111111111112),
np.float64(4.111111111111112),
np.float64(3.05)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(1.0), np.float64(1.0), 0.0],
[np.float64(1.0),
np.float64(1.8333333333333335),
np.float64(1.8333333333333335),
np.float64(1.0)],
[0.0, np.float64(2.0), np.float64(2.0), 0.0],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(1.8333333333333335),
np.float64(3.733333333333333),
np.float64(3.733333333333333),
np.float64(3.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(0.0)],
[0.0, np.float64(1.0), np.float64(1.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0,
np.float64(2.3333333333333335),
np.float64(2.3333333333333335),
np.float64(1.0)],
[np.float64(1.0),
np.float64(3.25),
np.float64(3.25),
np.float64(2.3333333333333335)],
[np.float64(3.0), np.float64(4.0), np.float64(4.0), np.float64(3.25)],
[np.float64(3.733333333333333),
np.float64(4.325),
np.float64(4.325),
np.float64(4.0)],
[np.float64(4.111111111111112),
np.float64(5.133333333333334),
np.float64(5.133333333333334),
np.float64(4.325)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(4.0), np.float64(4.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(2.0)],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[np.float64(2.0), np.float64(3.75), np.float64(3.75), np.float64(3.0)],
[np.float64(2.0),
np.float64(4.7272727272727275),
np.float64(4.7272727272727275),
np.float64(3.75)],
[np.float64(4.0),
np.float64(5.4),
np.float64(5.4),
np.float64(4.7272727272727275)],
[np.float64(5.133333333333334),
np.float64(6.012987012987013),
np.float64(6.012987012987013),
np.float64(5.4)],
[np.float64(5.9754901960784315),
np.float64(6.623882503192847),
np.float64(6.623882503192847),
np.float64(6.012987012987013)],
[np.float64(6.2216687422166865),
np.float64(7.189472174411933),
np.float64(7.189472174411933),
np.float64(6.623882503192847)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(0.0), np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(3.0), np.float64(3.0), np.float64(2.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), 0.0],
[0.0, np.float64(1.5), np.float64(1.5), np.float64(1.0)],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(1.5)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[np.float64(0.0), np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[np.float64(2.0), np.float64(4.0), np.float64(4.0), np.float64(2.0)],
[np.float64(3.0),
np.float64(4.638888888888889),
np.float64(4.638888888888889),
np.float64(4.0)],
[np.float64(3.0),
np.float64(5.184615384615385),
np.float64(5.184615384615385),
np.float64(4.638888888888889)],
[0.0, np.float64(3.0), np.float64(3.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(2.0), np.float64(2.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(1.0),
np.float64(1.6666666666666667),
np.float64(1.6666666666666667),
np.float64(1.0)],
[0.0, np.float64(2.5), np.float64(2.5), np.float64(1.6666666666666667)],
[np.float64(2.0),
np.float64(3.619047619047619),
np.float64(3.619047619047619),
np.float64(2.5)],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(0.0), np.float64(0.0), 0.0],
[0.0, np.float64(1.0), np.float64(1.0), np.float64(0.0)],
[np.float64(0.0),
np.float64(3.6666666666666665),
np.float64(3.6666666666666665),
np.float64(1.0)],
[np.float64(3.619047619047619),
np.float64(4.52),
np.float64(4.52),
np.float64(3.6666666666666665)],
[np.float64(0.0),
np.float64(4.866666666666666),
np.float64(4.866666666666666),
np.float64(4.52)],
[np.float64(3.0),
np.float64(5.735294117647059),
np.float64(5.735294117647059),
np.float64(4.866666666666666)],
[np.float64(5.184615384615385),
np.float64(5.991228070175438),
np.float64(5.991228070175438),
np.float64(5.735294117647059)],
[0.0, np.float64(4.0), np.float64(4.0), 0.0],
[0.0, np.float64(5.0), np.float64(5.0), np.float64(4.0)],
[0.0, np.float64(7.0), np.float64(7.0), np.float64(5.0)],
[np.float64(5.991228070175438),
np.float64(8.277027027027026),
np.float64(8.277027027027026),
np.float64(7.0)],
[np.float64(7.189472174411933),
np.float64(8.41774365950831),
np.float64(8.41774365950831),
np.float64(8.277027027027026)],
[np.float64(7.392857142857142),
np.float64(8.813728409767721),
np.float64(8.813728409767721),
np.float64(8.41774365950831)],
[np.float64(7.9411764705882355),
np.float64(9.02206349206349),
np.float64(9.02206349206349),
np.float64(8.813728409767721)],
[np.float64(8.396217418944692),
np.float64(9.128375463721852),
np.float64(9.128375463721852),
np.float64(9.02206349206349)],
[np.float64(7.916666666666667),
np.float64(9.69367050272562),
np.float64(9.69367050272562),
np.float64(9.128375463721852)],
[np.float64(3.0),
np.float64(11.73217550274223),
np.float64(11.73217550274223),
np.float64(9.69367050272562)],
[np.float64(11.176470588235293),
np.float64(12.097899922219339),
np.float64(12.097899922219339),
np.float64(11.73217550274223)]],
'ivl': ['12',
'196',
'34',
'218',
'47',
'231',
'88',
'268',
'516',
'480',
'29',
'213',
'354',
'555',
'484',
'91',
'271',
'448',
'534',
'101',
'280',
'64',
'247',
'406',
'607',
'458',
'9',
'193',
'130',
'304',
'5',
'189',
'548',
'395',
'596',
'16',
'200',
'430',
'438',
'439',
'443',
'385',
'586',
'436',
'361',
'562',
'407',
'608',
'447',
'403',
'604',
'422',
'496',
'359',
'560',
'520',
'457',
'98',
'277',
'155',
'323',
'468',
'369',
'570',
'373',
'574',
'380',
'581',
'424',
'440',
'35',
'219',
'370',
'571',
'145',
'6',
'190',
'404',
'605',
'513',
'371',
'572',
'515',
'414',
'615',
'42',
'226',
'83',
'263',
'477',
'140',
'313',
'503',
'356',
'557',
'543',
'160',
'328',
'392',
'593',
'451',
'492',
'478',
'618',
'602',
'401',
'417',
'133',
'71',
'473',
'540',
'383',
'584',
'538',
'162',
'330',
'408',
'609',
'387',
'588',
'63',
'246',
'89',
'269',
'85',
'265',
'97',
'276',
'353',
'554',
'433',
'498',
'493',
'531',
'72',
'253',
'166',
'334',
'363',
'564',
'68',
'250',
'81',
'262',
'82',
'27',
'211',
'124',
'298',
'432',
'179',
'347',
'412',
'613',
'398',
'599',
'491',
'59',
'242',
'15',
'199',
'425',
'153',
'321',
'4',
'188',
'122',
'296',
'109',
'287',
'107',
'138',
'311',
'434',
'3',
'187',
'358',
'559',
'125',
'299',
'522',
'28',
'212',
'118',
'56',
'239',
'508',
'527',
'65',
'248',
'485',
'482',
'315',
'201',
'17',
'143',
'471',
'75',
'256',
'111',
'77',
'258',
'420',
'36',
'220',
'70',
'252',
'181',
'349',
'78',
'259',
'180',
'348',
'374',
'575',
'183',
'351',
'549',
'375',
'576',
'450',
'462',
'44',
'228',
'579',
'378',
'463',
'74',
'255',
'127',
'301',
'429',
'116',
'292',
'76',
'257',
'437',
'419',
'620',
'455',
'55',
'238',
'84',
'264',
'51',
'235',
'110',
'131',
'305',
'139',
'312',
'176',
'344',
'528',
'148',
'318',
'115',
'291',
'126',
'300',
'537',
'552',
'33',
'217',
'119',
'481',
'170',
'338',
'1',
'185',
'13',
'197',
'539',
'530',
'31',
'215',
'152',
'129',
'303',
'309',
'184',
'0',
'136',
'475',
'164',
'332',
'525',
'366',
'567',
'376',
'577',
'32',
'216',
'43',
'227',
'135',
'308',
'362',
'563',
'545',
'52',
'236',
'25',
'209',
'69',
'251',
'175',
'343',
'547',
'400',
'601',
'445',
'80',
'261',
'442',
'167',
'335',
'365',
'566',
'465',
'411',
'612',
'38',
'222',
'39',
'223',
'546',
'460',
'532',
'100',
'279',
'96',
'275',
'428',
'86',
'266',
'427',
'580',
'379',
'157',
'325',
'381',
'582',
'14',
'198',
'73',
'254',
'61',
'244',
'382',
'583',
'470',
'128',
'302',
'150',
'319',
'483',
'396',
'597',
'569',
'368',
'2',
'186',
'174',
'342',
'405',
'606',
'177',
'345',
'409',
'610',
'113',
'289',
'360',
'561',
'10',
'194',
'45',
'229',
'112',
'288',
'541',
'30',
'214',
'544',
'94',
'273',
'510',
'58',
'241',
'147',
'317',
'134',
'307',
'418',
'619',
'151',
'320',
'367',
'568',
'316',
'282',
'103',
'144',
'19',
'203',
'104',
'283',
'490',
'529',
'49',
'233',
'431',
'393',
'594',
'533',
'79',
'260',
'454',
'168',
'336',
'106',
'285',
'158',
'326',
'459',
'23',
'207',
'8',
'192',
'50',
'234',
'509',
'182',
'350',
'466',
'413',
'614',
'357',
'558',
'24',
'208',
'7',
'191',
'90',
'270',
'324',
'322',
'154',
'156',
'26',
'210',
'132',
'306',
'173',
'341',
'506',
'48',
'232',
'542',
'41',
'225',
'472',
'391',
'592',
'402',
'603',
'60',
'243',
'171',
'339',
'507',
'178',
'346',
'364',
'565',
'499',
'105',
'284',
'514',
'18',
'202',
'99',
'278',
'102',
'281',
'397',
'598',
'95',
'274',
'386',
'587',
'21',
'205',
'502',
'394',
'595',
'479',
'495',
'149',
'474',
'505',
'456',
'92',
'272',
'159',
'327',
'489',
'535',
'415',
'616',
'452',
'53',
'237',
'37',
'221',
'142',
'314',
'461',
'500',
'123',
'297',
'521',
'141',
'377',
'578',
'121',
'295',
'524',
'421',
'114',
'290',
'57',
'240',
'469',
'137',
'310',
'120',
'294',
'54',
'487',
'536',
'416',
'617',
'488',
'523',
'551',
'67',
'511',
'352',
'553',
'384',
'585',
'449',
'494',
'486',
'435',
'40',
'224',
'108',
'286',
'517',
'172',
'340',
'446',
'66',
'249',
'117',
'293',
'476',
'46',
'230',
'169',
'337',
'161',
'329',
'11',
'195',
'165',
'333',
'20',
'204',
'526',
'399',
'600',
'518',
'146',
'389',
'590',
'410',
'611',
'467',
'93',
'441',
'62',
'245',
'372',
'573',
'453',
'504',
'163',
'331',
'426',
'22',
'206',
'464',
'512',
'87',
'267',
'501',
'388',
'589',
'390',
'591',
'550',
'355',
'556',
'423',
'497',
'444',
'519'],
'leaves': [12,
196,
34,
218,
47,
231,
88,
268,
516,
480,
29,
213,
354,
555,
484,
91,
271,
448,
534,
101,
280,
64,
247,
406,
607,
458,
9,
193,
130,
304,
5,
189,
548,
395,
596,
16,
200,
430,
438,
439,
443,
385,
586,
436,
361,
562,
407,
608,
447,
403,
604,
422,
496,
359,
560,
520,
457,
98,
277,
155,
323,
468,
369,
570,
373,
574,
380,
581,
424,
440,
35,
219,
370,
571,
145,
6,
190,
404,
605,
513,
371,
572,
515,
414,
615,
42,
226,
83,
263,
477,
140,
313,
503,
356,
557,
543,
160,
328,
392,
593,
451,
492,
478,
618,
602,
401,
417,
133,
71,
473,
540,
383,
584,
538,
162,
330,
408,
609,
387,
588,
63,
246,
89,
269,
85,
265,
97,
276,
353,
554,
433,
498,
493,
531,
72,
253,
166,
334,
363,
564,
68,
250,
81,
262,
82,
27,
211,
124,
298,
432,
179,
347,
412,
613,
398,
599,
491,
59,
242,
15,
199,
425,
153,
321,
4,
188,
122,
296,
109,
287,
107,
138,
311,
434,
3,
187,
358,
559,
125,
299,
522,
28,
212,
118,
56,
239,
508,
527,
65,
248,
485,
482,
315,
201,
17,
143,
471,
75,
256,
111,
77,
258,
420,
36,
220,
70,
252,
181,
349,
78,
259,
180,
348,
374,
575,
183,
351,
549,
375,
576,
450,
462,
44,
228,
579,
378,
463,
74,
255,
127,
301,
429,
116,
292,
76,
257,
437,
419,
620,
455,
55,
238,
84,
264,
51,
235,
110,
131,
305,
139,
312,
176,
344,
528,
148,
318,
115,
291,
126,
300,
537,
552,
33,
217,
119,
481,
170,
338,
1,
185,
13,
197,
539,
530,
31,
215,
152,
129,
303,
309,
184,
0,
136,
475,
164,
332,
525,
366,
567,
376,
577,
32,
216,
43,
227,
135,
308,
362,
563,
545,
52,
236,
25,
209,
69,
251,
175,
343,
547,
400,
601,
445,
80,
261,
442,
167,
335,
365,
566,
465,
411,
612,
38,
222,
39,
223,
546,
460,
532,
100,
279,
96,
275,
428,
86,
266,
427,
580,
379,
157,
325,
381,
582,
14,
198,
73,
254,
61,
244,
382,
583,
470,
128,
302,
150,
319,
483,
396,
597,
569,
368,
2,
186,
174,
342,
405,
606,
177,
345,
409,
610,
113,
289,
360,
561,
10,
194,
45,
229,
112,
288,
541,
30,
214,
544,
94,
273,
510,
58,
241,
147,
317,
134,
307,
418,
619,
151,
320,
367,
568,
316,
282,
103,
144,
19,
203,
104,
283,
490,
529,
49,
233,
431,
393,
594,
533,
79,
260,
454,
168,
336,
106,
285,
158,
326,
459,
23,
207,
8,
192,
50,
234,
509,
182,
350,
466,
413,
614,
357,
558,
24,
208,
7,
191,
90,
270,
324,
322,
154,
156,
26,
210,
132,
306,
173,
341,
506,
48,
232,
542,
41,
225,
472,
391,
592,
402,
603,
60,
243,
171,
339,
507,
178,
346,
364,
565,
499,
105,
284,
514,
18,
202,
99,
278,
102,
281,
397,
598,
95,
274,
386,
587,
21,
205,
502,
394,
595,
479,
495,
149,
474,
505,
456,
92,
272,
159,
327,
489,
535,
415,
616,
452,
53,
237,
37,
221,
142,
314,
461,
500,
123,
297,
521,
141,
377,
578,
121,
295,
524,
421,
114,
290,
57,
240,
469,
137,
310,
120,
294,
54,
487,
536,
416,
617,
488,
523,
551,
67,
511,
352,
553,
384,
585,
449,
494,
486,
435,
40,
224,
108,
286,
517,
172,
340,
446,
66,
249,
117,
293,
476,
46,
230,
169,
337,
161,
329,
11,
195,
165,
333,
20,
204,
526,
399,
600,
518,
146,
389,
590,
410,
611,
467,
93,
441,
62,
245,
372,
573,
453,
504,
163,
331,
426,
22,
206,
464,
512,
87,
267,
501,
388,
589,
390,
591,
550,
355,
556,
423,
497,
444,
519],
'color_list': ['C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C0',
'C0',
'C4',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C0',
'C0',
'C6',
'C6',
'C6',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C0',
'C0',
'C0',
'C0',
'C0',
'C0'],
'leaves_color_list': ['C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C3',
'C4',
'C4',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C5',
'C6',
'C6',
'C6',
'C6',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C7',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C8',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C9',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C1',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2',
'C2']}
In [232]:
plt.figure(figsize=(10, 7))
dendrogram(Z, truncate_mode='lastp', p=30) # show last 30 merges
plt.title('Hierarchical Clustering Dendrogram (Truncated)')
plt.xlabel('Cluster Size')
plt.ylabel('Distance')
plt.show()
In [234]:
plt.figure(figsize=(10, 10))
dendrogram(Z, orientation='left', truncate_mode='lastp', p=20)
plt.title('Dendrogram (Horizontal)')
plt.xlabel('Distance')
plt.show()
In [ ]: